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There are several approaches to the expansion of a gas cloud, of which the best with 
regard to derivation of analytic solutions is that based on [I], where an initial general 
system of equations was derived for the elements of the matrix that defines the solution to 
the equations of hydrodynamics, and it was pointed out that several first integrals of this 
system can be derived. With regard to the escape of the gas cloud into vacuum, several first 
integrals have been derived [2, 3], and the system has been integrated completely in certain 
simple cases. In [4], allowance was made for the gravitational interaction in this model, 
and there was a detailed discussion of the behavior of the solution on the basis of the quali- 
tative theory of differential equations. It is also possible to integrate the system in cer- 
tain cases by time transformation. In [5] the solution to the system of [i] was applied to 
the analysis of some features of a plasma cloud in a laser thermonuclear synthesis. There- 
fore, the approach of [I] provided some interesting results in plasma physics and astro- 
physics. The scope for using this approach in these areas is far from exhausted, since the 
exact solutions correspond to particular situations, where the system of equations simplifies 
very considerably. Another sphere of application is to the motion of a cloud of ideal gas 
containing charged particles in an external steady magnetic field. This form of problem 
arises in astrophysics and in plasma physics, where a solution may assist in qualitative 
explanation of the behavior of objects as in controlled thermonuclear synthesis. It is pos- 
sible to extend the application in this way because the additional term produced by the 
magnetic field in the equation of motion is proportional to the coordinate of the particle 
(Lagrangian coordinate), which is a necessary condition for solving the system by the method 
of [1]. 

Here we consider the dynamics of a cloud of charged particles taking the form of an 
ellipsoid in an external magnetic field whose direction coincides with one of the axes of the 
ellipsoid (with the longitudinal axis for a spheroid). 

The axis of rotation of the cloud coincides in direction with the magnetic field. The 
gas is considered ideal and the expansion is adiabatic. We convert from the cartesian co- 
ordinates x i to the Lagrangian ones a i for particular parts of the gas: 

x~(t) = &~(t)a~ (1)  

(here and subsequently the repeating subscripts indicate summation from 1 to 3) and we get [2] 
what follows from the equation continuity, Poisson's equation, and the first law of thermo- 
dynamlcs: 

9 = 9o ( a ) %/ %  p = ( ? -  l )po(a)Uo(a)(To/~)v ,  

= det l IFih l ] ,  vl = #ihah,  

where 0 is gas density; 7, adiabatic parameter; U, speciflc internal energy of the gas; and 
vl, velocity of a part. Quantities with subscript 0 correspond to initial values. Equation 
(i) is applicable to a magnetic field of ~his configuration, because ~he parts of the gas 
rotate synchronously in orbits in the magnetic field, and the velocities are proportional to 
the radii, which means that (i) is satisfied. The momentum equation in the presence of the 
field is as follows on ~he basis of (i): 

�9 . _~ 0 [ ( ~ _ l )  O o ( a ) U o ( a ) ( ~ ) ~  ] e �9 

where B is the induction; gik~, a completely antisymmetric unit pseudotensor of the third 
rank; e, particle charge; and m, particle mass. The variables can be separated into two 
cases: when 0o(a) takes the form 

Po (a) = Poo exp {-- a%~} 
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(it is assumed for simplicity that the level surfaces are spherical in Lagrangian coordinates), 

and Uo(a) i when 
2 o ,%(a) =cons t ,  U o ( a ) = U o o ( l - - a / a ~ ) ( h e r e  a 2 = a ~ + a ~ + a l ) .  

These two cases correspond to different density and temperature distributions in space. We 
consider one of the cases (for definiteness the second, but we recall that the formulas for 
the two cases are practically the same), which gives us a system of equations of the type of 
[1]:  

e (Z 2 ( 7 - - 1 ) "  ~ , - I ,_2  
- -  = uooq~o / - o .  ( 2 )  q~?-i 

System (2) has several first integrals. We transform by analogy with [2] to get the 
energy-conservation equation: 

?-- i ~-i + C1. (3) 

Integrals analogous to the laws of conservation of momentum and vorticity [2] take the form 

e e ( e )  2 
]7,kF~, --  F,~k, ,  = -~Tc B.e~m,~F,~kF~, + C.a. ,~---Te,,~B~ (Jv~kF,k-- F~,kth) = - -  ,-7777c e*>%'qB'BqFvkF'k + 2C=. (4) 

The vorticlty is not conserved in the form given in [2] here, but the relation of (4) iS 
obeyed. There is also an integral of motion analogous to that found in [3]. In fact, it can 
be shown that the following applies on the basis of the second equation in (4) when the mag- 
netic field lies along the axis of rotation of the ellipsoid: 

t (F~h)'" t (eB'lZ (F~h + F~h) + C1 + Cz. (5) 
-- 2 \mc/ 

Here C~ and Ca are constants from (3) and (4). In the case of an arbitrary magnetic field, 
the result is 

(1, ~,,) = - .,7~ ~. , ,e , , ,d~, ,n~L, , , r , , ,  -,- 2 (c ,  + c.~), 

which shows that it is impossible to obtain an integral of the type of [3]. The integration 
in (5) can be performed in a fairly general case, which corresponds to specification of the 
time dependence of Fzz in the absence of nondiagonal elements Fxz , Fyz, Fzx, Fzy in the Fik 
matrix. An example of this relationship is provided by 

( F ~ ) "  == Cs cos ((ot) -}- 2Ca. Here, F 2 Cat 2 ' ' C* C ~z = -i- C6t -~- -- ~ cos ((or) 
0)" 

and we get from (5) for u = Fxk + Fy k that 

u ~- o?ou = 2 (C1 + Ca - -  C~) - -  Cs cos (o), t), ( 6 )  

where ~ = eB/mc; the solution to (6) is familiar (the equation for forced oscillations) and 
for the case of resonance (~ = ~o) we get 

u =2o)~ (C1--,--' C.~--C:,)+. C~o-- ---2% t s i n ( % t ) + g u c o s ( % t ) ,  (7) 

which gives the corresponding integral. Note that the case Ca = C~ = Ca = 0 corresponds to 
two-dimensional expansion of an unbounded gas cylinder, while the case in which these quanti- 
ties are not zero corresponds to expansion of a gas ellipsoid in a longitudinal magnetic 
field. 

The system of equations for Fik can be solved completely in the simplest cases. One of 
these is a rotating unbounded gas cylinder of circular cross section, where 7 is taken as two 
to make the equations integrable. There are nonzero matrix elements Fxx = Fyy, Fxy = --Fyx. 
We transform the equations and get from (3) and (7) with Fxx = R sin X, Fxy -- R cos X that 

-- ]/u-~2, %" :- 7 \C~ q~ 4u ] '  q) = "-if" 1/ 
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We integrate (8) with the initial conditions 

L = ( o )  = ~ '~  (o) = .t, ,~'~..~ (o) = k .~  (o) = b, F~,, (o) = F~.~ (o) = ~ :,,,, (o) = F,,.,. (0) = O, 

o '#-J ' : ; i  :i- (,,'-' + ~)'~- 
/ ~,, + rz'~ - -  " [ , , ,]  ' 2 (b  ~- ,+- r l + '~ ), . . , .  

t o  get 

6'~ = 2 (b ~ + r 

sin ( ~ . t  + , ) ,  

Oo, (':" + ' ~176 + ' ~ ~ + } "  ",, a r e t a a  ~. . . 
~ = - z ' . , -  Vo,;-I-',~ -I  o, oVo,~,+',~, 

The most interesting characteristics of this case, viz., the radius of a cylinder and the 
angular momentum about the longitudinal axis, are defined by 

i } 1/2 n = ,o's+ .~ (~-~-~.) + ~ V" ~ ' " " �9 b ' o 8  @ (b 2 -~- ~)"  Si l l  (~00t "7- ~[') , 

/ 

u . .  = - -~  t,oo,,o (rx.~k~,., T Y~,~'~,,) -= ~ por ~ , c~ ~ ~,, .. 

Here R represents oscillations about some equilibrium value, and the behavior of M z is also 
oscillatory. When 7 " 5/3, the system cannot be integrated to completion in a simple fashion, 
but R and M z are readily determined. Here 

I( )]" n = V ~ ,  M :  = - ~  I,oo,,,, ,.,. C~ v .... ~ /. ~":~, ) - -  ( k : ~ ) ~ -  ~ " 

The behavior of these quantities is similar to that given above, but the oscillations are 
nonstationary, as (7) shows. 

The solution for Fzz = u/2 is also expressible in terms of elementary functions. In 
that case the equation for • on rotation of a spheroid around the longltudinal axis simpli- 
fies to 

"i �9 (;"z ,-m- ( 9 )  "-= C t  a '  8t~ t"  

The equation for u becomes 

3 "" o 
T u -'- (o;u == 2(Cl  + C~). (10) 

We solve (10) to get 

+ 2  
--~ (6'i'4- C~). 

\ -  o 

We substitute (11) into (9) and integrate with the initial data 

r~(0) = F,,~(0) ~ F.(0) = i, Fx,~(0) = F,,~O) = 0, F~yO) = I,,~ (0) - 0, 

�9 " , ~ V ~ -  ~ q - a  
e.,.~ (o) = k~,, (o) = F . ,  (o) = b, c ,  = 3 (b~ T r C~ = ~o;, t a n ,  = ~ ~,o-----/-" 

,.,o'too -~- 3 (b" q- ~)-; O)o, 

to get finally 

(00 arctan 
x = " - 7 - -  V ~ + o ~  / 

-- 2 2  2 o '  

~oV ~o ~ + ~ 

(ll) 

If the cross section of the ellipsoid is nonclreular (or the same applies to the cylin- 
der), it is possible to integrate the relationships corresponding to the conservation of 
momentum and vorticity. As above, we assume that the Fxx, Yyy) Yxy, Yy x elements are dif- 
ferent from zero. Equations (4) are then written as 

56 



' ,' + ' ~  ' ,' "' ' 'F /~ 'B'X'F F 

' _ _ _ _ 1 _  eB___ F ~ , F~ , F,~ , F 2 , 

We successively add and subtract these relations and perform a transformation t o  g e t  

Flu -- 1; 7ix " eB l"x u 

( ). [ . c , , - c ,  F x x -  l;'~m eB t "-7 
�9 (Fxu 27 Ux) 

(12) 

which are readily integrated with appropriate initial conditions. In fact, it is possible 
to choose a set of initial conditions such that Ca = C4 = 0, and integration of (12) than 
gives 

{~176 '1 ) ,  Fxx--Fvv = t a n ( ~  + * , ) .  (13) Fxv - -  FV~ =tan ~-5-- @ 
Fxx + Fvu - 

Equations (13) allow us to reduce the number of unknowns to a minimum. In particular, for 
~t -- Sa= ~/2 we introduce~R sin X, Fyy = R cos X, 6 = ~ot/2 + ~x to get Fly = Fxx tan 
6, Fy x = --Fyy tan 8, R = /u cos ~ and 

i2 = t (=C 1 cos ~ ~ --  (H') ~ --  -~- tan~ (R~)" FL cos- 6 j ~. (14) 
u cos~ 6 4 -" 7-- t FzzB~Sin%cos% 

Equations (14) are very convenient for numerical analysis and correspond to the motion of a 
triaxial ellipsoid rotating in a magnetic field coincident with one of the axes. 

The above particular cases correspond to various relationships between magnetic field 
(characteristic value ~o) and the gas pressure (characteristic value =). The case of (8) 
corresponds to a fairly strong magnetic field, which is capable of retaining a rotating gas 
cloud. The case of (9) corresponds to a weak magnetic field that does not substantially in- 
fluence the expansion of the cloud (after the compression part). It is possible to derive 
the general behavior, e.g., in the compression and escape of a rotating charged gas column 
(ellipsoid) in a longitudinal magnetic field by applying solutions of the type of (8) or (9) 
to the corresponding areas. The equations also allow one to construct more complex exact 
solutions corresponding to cases encountered in practice, in particular variations in the 
form of Fzz. 

The applications in astrophysics and plasma physics are accompanied by independent 
interest in =he resulgs of integrating (2), since there are cases that are fairly compli- 
cated but which enable one to obtain solutions in elementary functions or which allow one 
to refer the final integrals to tabulated ones. 
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